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Abstract. The atom optics of Bose-Einstein condensates containing a vortex of circulation one is discussed.
We first analyze in detail the reflection of such a condensate falling on an atomic mirror. In a second part,
we consider a rotating condensate in the case of attractive interactions. We show that for sufficiently large
nonlinearity the rotational symmetry of the rotating condensate is broken.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions

1 Introduction

During the last years, the experimental achievement of
Bose-Einstein condensation (BEC) [1,2] has raised a large
interest, and numerous theoretical and experimental ef-
forts have been devoted to the analysis of its intriguing
properties. This interest is partially motivated by the fact
that the BEC is a macroscopic coherent matter wave, with
evident applications in the already well-developed field of
atom optics [3]. In this sense, the dynamics of BECs in-
teracting with atom optical elements, such as e.g. optical
or magnetic mirrors [4,5], or wave guiding [6], has been
recently investigated.

Additionally, the BEC presents remarkable properties
due to its superfluidity [7], in particular the quantization
of vortex circulation [8]. In this sense, studies of vortices
in trapped condensates have attracted a growing atten-
tion [9–11]. A first aim of this paper is the analysis of the
atom-optics of a BEC that contains a vortex. In partic-
ular we study a BEC with a single vortex of circulation
one when falling to and being reflected from an atomic
mirror. We show that the coherent dynamics exhibits in
such a situation self-interference effects, restoration of a
vortex of opposite circulation after reflection, splitting of
the BEC into two parts at the top of the bounce, and for-
mation of additional vortices in low density regions. This
analysis may serve as a way to investigate the properties
of rotating BECs.

During the recent years, the development of the
Feshbach-resonance technique has allowed it to change
the strength and even the sign of the interparticle in-
teractions [12,13]. This technique consists of employing
magnetic fields to excite resonances between atomic and
molecular states, and in this way strongly influence the
value of the s-wave scattering length as [14]. By using this
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novel technique, particularly remarkable experiments have
been performed, including the Bose-nova experiments at
JILA [13], or the recent creation of bright solitons [15,16].
The same technique can be employed to analyze the sta-
bility and eventual collapse of a BEC containing one or
more vortices. This constitutes the second part of this pa-
per. We show that a larger stability, similar to that dis-
cussed for the case of surface modes [17], can be expected
in the case in which the rotational symmetry is kept, due
to the centrifugal barrier imposed by the vortex. However,
we show that the rotational symmetry is actually broken
when the attractive nonlinearity is adiabatically increased
to a sufficiently large value. For that case, we show that
eventually a piecewise collapse is produced for nonlinear-
ities comparable with the critical ones for a non rotating
condensate.

The paper is organized as follows. In Section 2 we dis-
cuss the reflection of a rotating BEC from a mirror. In
Section 3 we study the collapse of a rotating BEC, dis-
cussing the stability and the possibility of breaking of the
rotational symmetry. Finally, in Section 4 we present some
conclusions.

2 Reflection of a rotating BEC

In the following, we consider a gas of N bosons placed
in a harmonic trap with pancake symmetry of frequen-
cies ω⊥ � ωz. For sufficiently strong axial confinement,
such that µ � �ωz, with µ the chemical potential, the
axial dynamics can be considered as effectively frozen.
Hence, the wave-function can be written as ψ3D(x, y, z) =
ψ(x, y)ψ0(z), where the transversal profile ψ0(z) is that
of the ground-state of the axial harmonic oscillator. For
sufficiently low temperatures, the BEC dynamics is then
well described by the two-dimensional Gross-Pitaevskii
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Fig. 1. Reflection of a rotating BEC for g2D = 0. The gas is
released at t = 0 (top-left figure). The mirror is placed at the
bottom line of the figures.

equation (GPE):
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The reflection of a non-rotating BEC has been experimen-
tally accomplished both from optical [4] and magnetic [5]
mirrors. In the following we analyze such a reflection for
the case of a rotating condensate.

We consider in the following a hard mirror (at y = 0),
corresponding to a sufficiently large and abrupt potential

Fig. 2. Same as Figure 1 but with g2D = 345.6�2/m.

barrier. In general the mirror has a finite razor, which
by means of holographic techniques in the case of optical
mirrors can be limited to few laser wavelengths, typically
of the order of few microns. This length scale is smaller
than those involved in our case (see Figs. 1 and 2), and
therefore the softness of the mirror is not expected to in-
troduce any significant modification in the discussed ef-
fects. In this case, the mirror can be easily simulated by
forcing the wave function to be antisymmetric on the axis
perpendicular to the mirror: ψ(y) = −ψ(−y). Instead of
one BEC, which is reflected by a potential, we may then
consider two condensates: the “real” BEC, and its anti-
symmetric counterpart on the other side of the mirror,
the “ghost” BEC. During the reflection both condensates
just pass through each other, the ghost becoming the ob-
served reflected BEC.

In our numerical simulations we have set the trap fre-
quencies to ω⊥ = 2π×20 Hz and ωz = 2π×800 Hz, which
guarantees the two-dimensional character of the dynam-
ics for the cases considered. By means of imaginary-time
evolution [18] we create a BEC with a vortex in its center,
which is initially located at a height y = h = 78.5 µm
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over the mirror. At t = 0, the trap in the xy-plane is
switched-off (ω⊥ = 0). Notice that the axial trapping po-
tential remains switched-on, and therefore the system is
maintained two-dimensional. The condensate falls down
in the gravity field towards a hard mirror at y = 0, where
it is bounced upwards again. We discuss the results for
two cases:

(i) a very low number of atoms (g2D = 0),
(ii) and N � 18 600 23Na atoms, which corresponds to a

coupling parameter g2D = 345.6�
2/m.

In Figures 1 and 2 we depict the evolution of the falling
BEC at different times for the (i) and (ii) case respectively.
The condensate is dropped at t = 0 ms, and the reflection
occurs at t � 4 ms (the mirror is along the bottom border
of the boxes), whereas the upper turning point is reached
at t � 8 ms.

In the pictures taken at t = 4 ms an interference pat-
tern can be observed of the falling parts of the conden-
sate and the already reflected parts. It is not affected by
the nonlinearity and shows up both in linear and nonlin-
ear simulations. The interference lines are very dense and
therefore the pattern is not very clearly visible in the fig-
ures. Shortly after t = 6 ms the BEC is focused to a small
strip by the gravitational cavity. At the top of the bounce
the condensates splits into two parts (see explanation be-
low) with a region of zero density separating them. In the
interacting case the core size is smaller, and consequently
the low-density region which separates both parts is nar-
rower, as observed in Figure 2. In addition, as commented
below, in the low-density line we have observed in the in-
teracting case the creation of additional vortices [20].

The focusing of the condensate at one point in its
bouncing has classical origins. At the reflection gravity
changes from an accelerating force to an decelerating force.
Due to the fact that the lower parts of the condensate are
reflected earlier than the upper parts, all atoms gain a
small velocity boost towards the center of the BEC. In-
deed, if the velocity spreading ∆v of the condensate sat-
isfies ∆v � √

2gh, then one can consider the condensate
particles initially with v = 0. In that case if the initial
condensate spatial width ∆y � h, one obtains that after
the first bounce the particles are focused at y � 3h/4 at
a time t = 3

√
h/2g+O((∆y/h)2). Similar arguments can

be applied for larger velocity spreadings.
From the density profiles it is difficult to draw conclu-

sions whether a vortex remains in the BEC after the reflec-
tion. Much more information can be obtained by looking
at the phase of the wave function. In Figure 3, a plane wave
is added to the wave function, ψ(r) → ψ(r) + |ψ(r)|eik·r.
In this way the phase becomes visible and a vortex can
be detected as a fork in the image [19]. In order to be
able to observe the phase in the dilute outer regions, a
constant value (1/10 of the maximum density) is added
to the density.

In the first picture of Figure 3 the initially created
(right-spinning) vortex shows up as a fork which is opened
to the bottom. Shortly after the reflection (t = 5 ms) the
fork is opened to the top, which means that the vortex has

Fig. 3. A closer look at the phase of the BEC in Figure 2. Vor-
tices are visible as fork patterns: right-spinning vortices show
up as forks opened to the bottom, while left-spinning vortices
can be observed as forks opened to the top.

changed its direction of spin during the reflection and now
rotates to the left. Surprisingly, three vortices are visible
in the last picture (t = 8 ms). Two of them must have
been created during the squeezed state between t = 6 ms
and t = 7 ms. Even more interesting is the fact that the
total vorticity is not conserved during the squeezing: while
at t = 5 ms the BEC contains one left-spinning vortex, at
t = 8 ms this vortex is joined by two new vortices which
are both right-spinning. This vortex instability does not
appear in simulations, in which the nonlinear interactions
have been switched off, and therefore requires nonlinear in-
teractions between the atoms. Similar instabilities of vor-
tices have been observed by Garćıa-Ripoll et al. [20] for
vortices in trapped condensates.

A rather simple model can be employed to account
for the basic features of the condensate reflection in
the absence of interactions. In that case, the dynamics
is provided by a Schrödinger equation with a potential
V (y) = mg|y| (employing the ghost-BEC picture dis-
cussed above), where g is the gravitational acceleration.
It is possible to obtain a semi classical approximation by
splitting the process into three steps:

(i) expansion while falling towards the mirror,
(ii) reflection,
(iii) propagation off the mirror.

Ignoring the gravitational effects, which will be in-
cluded later, and evolving from an original wave-function
ψ0(x), the evolution reduces to a simple expansion in free
space: ψ1(x, t) = FT−1

[
exp(−�k2t/2m)FT[ψ0]

]
, where

FT and FT−1 denote the direct and inverse Fourier
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Fig. 4. FT results for the same case as in Figure 1.

transform, respectively. The main effect of the reflec-
tion step (ii) is a velocity boost depending on the po-
sition in the condensate. The lower parts of the con-
densate are reflected earlier than the upper parts, and
this time difference is essential because at the reflection
gravitation changes from an accelerating force to a de-
celerating force. We can classically calculate the result-
ing velocity boost, ∆v(y) = −2y/t1, where t1 =

√
2h/g

is the reflection time of the BEC center of mass, and
y is the relative position in the frame of the conden-
sate. After applying this velocity boost to the conden-
sate, ψ2(x) = ψ1(x, t1) exp(−imy2/�t1), we evolve in
the stage (iii) again in free space until a final time t2
after the reflection of the center of mass: ψf (x) =
FT−1

(
exp(−i�k2t2/2m)FT(ψ2)

)
. Figure 4 shows the evo-

lution of the BEC wave-function obtained by means of the
previously discussed approach, which agrees very well with
the numerical results shown in Figure 1. We expect that
this should be the case as long as the velocity spreading
of the condensate ∆v � √

2gh.

The previous simplified picture allows for an easy un-
derstanding of the breaking up of the condensate into two
pieces observed in our numerical simulations. In its way
up after the reflection the condensate possesses a velocity
field which results from the addition of the vortex veloc-
ity field and the linear velocity boost resulting from the
gravitational field, v = (ωy/r2,−ωx/r2 −2y/t1), where ω
is the angular velocity. As a consequence the compression
is not symmetrical around the vertical coordinate of the
center of mass, y = 0, but on the contrary the left part
of the cloud concentrates in the upper half-plane, whereas
the right part does it in the lower one. As a result the
condensate splits into two pieces.

3 Implosions of rotating BECs

While in the previous sections the interparticle interac-
tions were assumed to be repulsive, we now consider clouds
of atoms with attractive interactions, i.e. as < 0. For
small enough trapped condensates, the dispersion induced
by the zero-point oscillation of the trap can prevent the
nonlinear focusing provided by the attractive mean-field,
and in this way a metastable BEC can be created [2].
However, for sufficiently large condensates in two- and
three-dimensional trapping geometries, the gas is unstable
against collapses. Actually, in physical situations, the for-
mation of a singularity is avoided due to the appearance
of two- and three-body losses at large densities [21–23]. It
is the aim of this section to discuss the physics of rotating
attractive BECs, including stability and the possibility of
symmetry breaking.

As a first approach, we consider a vortex at the center
of a two-dimensional rotationally-symmetric BEC, and as-
sume that the rotational symmetry ψ(r, t) = χ(r, t)eiφ is
kept for any value of the nonlinearity. As we show at the
end of this section this assumption actually breaks down
when the value of |g2D| (g2D = −|g2D|) is adiabatically
increased to a sufficiently large value.

Our analysis has been performed by means of numer-
ical simulations of the GPE (1). We start with a rotating
condensate in the absence of interactions, g2D = 0, which
is provided by (2) with n = 1, in the presence of a central
vortex. Then, the coupling parameter |g2D| is adiabatically
increased in order to establish the criterion for condensate
stability [21]. Physically the value of g2D can be modified
either by increasing the number of atoms for a fixed nega-
tive value of the scattering length, or by reducing a2D for
a fixed number of atoms by means of Feshbach resonances.
Note that if, on the contrary, g2D is changed rapidly, addi-
tional structures as those discussed in reference [23] could
eventually appear.

We would like to note at this point, that as long as
the BEC density is not very large, the GPE (1) should
describe very well the condensate dynamics. However, as
discussed above, at large densities two- and three-body
losses do play an important role in preventing the forma-
tion of a singularity. This could be described by including
in the GPE the corresponding cubic (two-body) and quin-
tic (three-body) damping terms as discussed in references
[21–23]. It is not the purpose of this paper to analyze the
physics after the collapse occurs, and therefore we con-
strain ourselves to the use of the GPE (1).

In the later stages of the collapse the trapping poten-
tial becomes negligible compared to the mean-field energy
and to the kinetic energy. Therefore (even for initially non-
symmetric confinements) the later stages of the collapse
are characterized by a single length scale l(t) which has a
universal scaling law l(t) ∝ √

t− t0, where t0 is the time at
which the BEC collapses into a singular point [24]. By us-
ing this self-similar scaling on the numerical grid it is pos-
sible to perform the simulation up to the very final stages
of the collapse. Figure 5 shows the behavior of

√〈r2〉 as a
function of the coupling parameter g2D for the cases with
and without a vortex at the trap center. This condensate
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Fig. 5. Mean square radius
�〈r2〉 for a rotating (solid) and

non rotating (dotted) two-dimensional BEC if the rotational
symmetry is preserved, as a function of g2D, which is adiabat-
ically decreased as linear function of time.

width presents the expected scaling at the final stages of
the collapse. As observed in Figure 5, if the rotational sym-
metry is preserved for any value of |g2D| the critical values
of the coupling constant, gc, for which the collapse occurs,
significantly differ between the case without and with a
vortex. In particular, the centrifugal force due to the vor-
tex would amount for a larger stability of the condensate,
and consequently for a larger value of |gc|. We have numer-
ically obtained that in the presence of vortex the value of
gc is roughly four times larger than that in the absence of
it: gc(n = 0) = −5.85�

2/m and gc(n = 1) = −24.15�
2/m.

A similar stabilization mechanism was discussed in refer-
ence [17] for the case of attractive BEC in the presence of
surface modes.

An estimation of the critical coupling can be obtained
by considering a Gaussian ansatz

ψ(r) =
rne−

1
2

r2

σ2 eiφn

σn+1
√
π

, (3)

and minimizing the corresponding energy functional [25]

E[ψ] =
∫

d2r

[
�

2

2m
|∇ψ|2 +

m

2
ω2r2|ψ|2 +

g2D
2

|ψ|4
]
. (4)

In this way we obtain gc(n = 0) = −2π�
2/m ≈

−6.28�
2/m, and gc(n = 1) = −32e−2π�

2/m ≈
−13.6�

2/m. The Gaussian ansatz provides a good agree-
ment with the numerical results for the case without
vortex, but underestimates the stability for the case of
n = 1. This difference may be explained by the depar-
ture of the wave-function from the Gaussian ansatz, as we
have observed in our simulations for the case of coupling
constants close to gc.

In our previous numerical simulations, as well as in
the analytical estimations, we have assumed that the ro-
tational symmetry is preserved when the value of g2D is

adiabatically changed. In the final part of this section we
shall show that fully two-dimensional simulations clearly
indicate that such assumption must be revised, since the
rotational symmetry is actually broken in the presence
of any slight disturbance, when g2D is adiabatically in-
creased.

In order to analyze the effects of small perturbations of
the rotating BEC, we consider a simple model, in which a
Gaussian-like condensate with a centered vortex acquires
a slight asymmetry in the density distribution around the
line x(= r cosφ) = 0

ψ(r, φ) =
r e−1/2 r2

σ2 eiφ (1 + d r cos (φ))
σ2

√
π + d2σ2π

, (5)

where σ controls the width of the wave function, and d
is a small parameter that controls the asymmetry of the
condensate. Due to the fact that the sign of d can be
chosen arbitrarily, ∂E/∂d = 0 at d = 0, where E is defined
in equation (4). The second derivative at d = 0 provides
information about the stability of the condensate:

∂2E

∂d2

∣∣∣∣
d=0

=
1
8

5g2D + 8πσ4ω2

π
· (6)

The value for σ, which minimizes the energy at d = 0 is
given by

∂E

∂σ

∣∣∣∣
d=0

=
1
4

8πσ4ω2 − 8π − g2D
σ3π

= 0. (7)

Substituting this expression into equation (6) we obtain

∂2E

∂d2

∣∣∣∣
d=0

=
1
8

6g2D + 8π
π

· (8)

For 0 > g2D > −4π/3, this second derivative is pos-
itive and the condensate is expected to be stable. For
g2D < −4π/3 however, ∂2ψ/∂d2|d=0 is negative. There-
fore, it becomes clear even from this very simple model,
that beyond a given value of |g2D| the rotational symmetry
breaks down.

Figure 6 shows snapshots taken from a two-
dimensional simulation. A small asymmetry (correspond-
ing to d = 0.01

√
ωm/� in Eq. (5)) is applied to the ini-

tial state. Starting at g2D = 0, the coupling parameter
is then adiabatically decreased until the condensate col-
lapses. Once a critical value of the coupling parameter is
exceeded (|g2D| � 7.8), the asymmetry of the condensate
grows and the rotational symmetry breaks. In particu-
lar, the density concentrates into two oppositely-located
peaks. If |g2D| is further increased, the width of the peaks
decreases and eventually the peaks collapse (|gc| � 9.7).
Note that the value of gc is by a factor of about 1.7 larger
than that expected for a non-rotating BEC, but since the
BEC actually splits into two parts, the critical nonlinear-
ity in each peak is approximately the same as for the BEC
without vortex.

The emergence of the symmetry breaking can be ob-
served in more detail in Figure 7, which shows the value
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Fig. 6. Two-dimensional simulation of a BEC in a vortex state
when the value of g2D is adiabatically decreased. The lengths
are in units of

�
�/mω, and g2D in units of �2/m.
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Fig. 7. The distributions
�〈(r · e1)2〉 (solid line) and�〈(r · e2)2〉 (dotted line) of a BEC in a vortex state, where

e1 and e2 are the unit vectors pointing into the direction par-
allel or perpendicular to the symmetry breaking, respectively,
as indicated in Figure 6. The vertical dotted line indicates the
onset of instability.

of
√〈(r · ei)2〉 as a function of g2D, where e1 (e2) denotes

the direction parallel (perpendicular) to the axis of the
symmetry breaking. For g2D > −7.8�

2/m the rotational
symmetry holds and the condensate is perfectly described
by those calculations which employ such a symmetry. For
−7.8�

2/m > g2D > −9.7�
2/m the rotational symmetry is

broken, and the condensate splits into two parts orbiting
around the trap center. At this stage the larger is |g2D|

the narrower are the peaks of the distribution. Finally, for
g2D < −9.7�

2/m the condensate is unstable and collapses
into two points.

We would like to stress that a very similar picture has
been observed due to numerical inaccuracy even in the ab-
sence of any initially imposed perturbation. This strongly
suggests that any sort of physical noise, e.g. thermal one,
will lead to a breaking of the rotational symmetry when
the collapse is adiabatically approached.

4 Conclusions

In this paper we have analyzed some relevant phenomena
occurring in the atom-optical physics of rotating conden-
sates. In a first part we have analyzed the reflection of a
rotating BEC from an atomic mirror. We have observed
that the vortex is preserved after the reflection, both in the
presence and in the absence of interactions, and that its ro-
tation is inverted. The combination of gravitational effects
and the mirror produce the squeezing of the BEC cloud
after its bouncing, and leads eventually to the breaking
of the vortex and the formation of a notch in the density.
In the interacting case, we have observed the formation of
additional vortices in the region of the notch.

In the second part of this paper, we have considered
the case of a rotating BEC in the presence of attractive
interactions. We have shown that if the rotational sym-
metry is conserved, the centrifugal barrier induced by the
vortex amounts for a larger stability of the system. How-
ever, more careful calculations show that, if the value of
the nonlinearity is adiabatically reduced beginning by the
noninteracting case (either by increasing the number of
condensed atoms or by modifying the value of the scatter-
ing length via Feshbach resonances), the rotational sym-
metry is actually broken, and eventually a piecewise col-
lapse is produced. Such a symmetry breaking should occur
for any initial slight noise, i.e. even in the absence of any
imposed initial external perturbation.

We acknowledge support from the Alexander von Humboldt
Stiftung, the Deutscher Akademischer Austauschdienst
(DAAD), the Deutsche Forschungsgemeinschaft, the RTN
Cold Quantum gases, and the ESF Program BEC2000+.

Note added in proof

After the completion of this work we became aware that
Saito and Ueda [26] have recently discussed a similar effect
as that discussed in our Figure 6.
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